Integrating QoS awareness with virtualization in cloud computing systems for delay-sensitive applications
نویسندگان
چکیده
Cloud computing provides scalable computing and storage resources over the Internet. These scalable resources can be dynamically organized as many virtual machines (VMs) to run user applications based on a pay-per-use basis. The required resources of a VM are sliced from a physical machine (PM) in the cloud computing system. A PMmay hold one or more VMs. When a cloud provider would like to create a number of VMs, the main concerned issue is the VM placement problem, such that how to place these VMs at appropriate PMs to provision their required resources of VMs. However, if two or more VMs are placed at the same PM, there exists certain degree of interference between these VMs due to sharing non-sliceable resources, e.g. I/O resources. This phenomenon is called as the VM interference. The VM interference will affect the performance of applications running in VMs, especially the delay-sensitive applications. The delay-sensitive applications have quality of service (QoS) requirements in their data access delays. This paper investigates how to integrate QoS awareness with virtualization in cloud computing systems, such as the QoS-aware VM placement (QAVMP) problem. In addition to fully exploiting the resources of PMs, the QAVMP problem considers the QoS requirements of user applications and the VM interference reduction. Therefore, in the QAVMP problem, there are following three factors: resource utilization, application QoS, and VM interference.We first formulate the QAVMP problem as an Integer Linear Programming (ILP) model by integrating the three factors as the profit of cloud provider. Due to the computation complexity of the ILP model, we propose a polynomial-time heuristic algorithm to efficiently solve the QAVMP problem. In the heuristic algorithm, a bipartite graph is modeled to represent all the possible placement relationships between VMs and PMs. Then, the VMs are gradually placed at their preferable PMs to maximize the profit of cloud provider as much as possible. Finally, simulation experiments are performed to demonstrate the effectiveness of the proposed heuristic algorithm by comparing with other VM placement algorithms. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Energy Aware Resource Management of Cloud Data Centers
Cloud Computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and purchased. Virtualization technology forms a key concept for new cloud computing architectures. The data centers are used to provide cloud services burdening a significant...
متن کاملA Mobile and Fog-based Computing Method to Execute Smart Device Applications in a Secure Environment
With the rapid growth of smart device and Internet of things applications, the volume of communication and data in networks have increased. Due to the network lag and massive demands, centralized and traditional cloud computing architecture are not accountable to the high users' demands and not proper for execution of delay-sensitive and real time applications. To resolve these challenges, we p...
متن کاملEvolutionary Computing Assisted Wireless Sensor Network Mining for QoS-Centric and Energy-efficient Routing Protocol
The exponential rise in wireless communication demands and allied applications have revitalized academia-industries to develop more efficient routing protocols. Wireless Sensor Network (WSN) being battery operated network, it often undergoes node death-causing pre-ma...
متن کاملA Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints
One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...
متن کاملDesign of QoS Architecture for Global Cloud Computing Services by Adaptive Scheduling Algorithms
In this paper we will design architecture for cloud computing services with QoS by supported scheduling algorithm for resource allocation. Cloud generally uses virtualization technology which is specially designed for maximum resource utilization. The QoS of cloud environment for any kind of resource utilization is achieved feasibly by using QoS-aware Cache Replacement algorithm. This algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Future Generation Comp. Syst.
دوره 37 شماره
صفحات -
تاریخ انتشار 2014